6,456 research outputs found

    Statistical Mechanics of finite arrays of coupled bistable elements

    Get PDF
    We discuss the equilibrium of a single collective variable characterizing a finite set of coupled, noisy, bistable systems as the noise strength, the size and the coupling parameter are varied. We identify distinct regions in parameter space. The results obtained in prior works in the asymptotic infinite size limit are significantly different from the finite size results. A procedure to construct approximate 1-dimensional Langevin equation is adopted. This equation provides a useful tool to understand the collective behavior even in the presence of an external driving force

    A generalized Chudley-Elliott vibration-jump model in activated atom surface diffusion

    Get PDF
    Here the authors provide a generalized Chudley-Elliott expression for activated atom surface diffusion which takes into account the coupling between both low-frequency vibrational motion (namely, the frustrated translational modes) and diffusion. This expression is derived within the Gaussian approximation framework for the intermediate scattering function at low coverage. Moreover, inelastic contributions (arising from creation and annihilation processes) to the full width at half maximum of the quasi-elastic peak are also obtained.Comment: (5 pages, 2 figures; revised version

    Adsorbate surface diffusion: The role of incoherent tunneling in light particle motion

    Get PDF
    The role of incoherent tunneling in the diffusion of light atoms on surfaces is investigated. With this purpose, a Chudley-Elliot master equation constrained to nearest neighbors is considered within the Grabert-Weiss approach to quantum diffusion in periodic lattices. This model is applied to recent measurements of atomic H and D on Pt(111), rendering friction coefficients that are in the range of those available in the literature for other species of adsorbates. A simple extension of the model has also been considered to evaluate the relationship between coverage and tunneling, and therefore the feasibility of the approach. An increase of the tunneling rate has been observed as the surface coverage decreases.Comment: 7 pages, 2 figures; important reorganization of the work (including title changes

    Phonon lineshapes in atom-surface scattering

    Get PDF
    Phonon lineshapes in atom-surface scattering are obtained from a simple stochastic model based on the so-called Caldeira-Leggett Hamiltonian. In this single-bath model, the excited phonon resulting from a creation or annihilation event is coupled to a thermal bath consisting of an infinite number of harmonic oscillators, namely the bath phonons. The diagonalization of the corresponding Hamiltonian leads to a renormalization of the phonon frequencies in terms of the phonon friction or damping coefficient. Moreover, when there are adsorbates on the surface, this single-bath model can be extended to a two-bath model accounting for the effect induced by the adsorbates on the phonon lineshapes as well as their corresponding lineshapes.Comment: 14 pages, 2 figure

    Quantum Markovian activated surface diffusion of interacting adsorbates

    Get PDF
    A quantum Markovian activated atom-surface diffusion model with interacting adsorbates is proposed for the intermediate scattering function, which is shown to be complex-valued and factorizable into a classical-like and a quantum-mechanical factor. Applications to the diffusion of Na atoms on flat (weakly corrugated) and corrugated-Cu(001) surfaces at different coverages and surface temperatures are analyzed. Quantum effects are relevant to diffusion at low surface temperatures and coverages even for relatively heavy particles, such as Na atoms, where transport by tunneling is absent.Comment: 6 pages, 4 figure

    Comment on "Soliton ratchets induced by excitation of internal modes"

    Get PDF
    Very recently Willis et al. [Phys. Rev. E {\bf 69}, 056612 (2004)] have used a collective variable theory to explain the appearance of a nonzero energy current in an ac driven, damped sine-Gordon equation. In this comment, we prove rigorously that the time-averaged energy current in an ac driven nonlinear Klein-Gordon system is strictly zero.Comment: 3 pages, 1 figure, Submitted to Phys. Rev.

    Stochastic theory of lineshape broadening in quasielastic He atom scattering with interacting adsorbates

    Get PDF
    The activated surface diffusion of interacting adsorbates is described in terms of the so-called interacting single adsorbate approximation, which is applied to the diffusion of Na atoms on Cu(001) for coverages up to 20% in quasielastic He atom scattering experiments. This approximation essentially consists of solving the standard Langevin equation with two noise sources and frictions: a Gaussian white noise accounting for the friction with the substrate, and a white shot noise characterized by a collisional friction simulating the adsorbate-adsorbate collisions. The broadenings undergone by the quasielastic peak are found to be in very good agreement with the experimental data reported at two surface temperatures 200 and 300 K.Comment: 6 pages, 3 figure

    Modelling a two-dimensional spatial distribution of mycotoxin concentration in bulk commodities to design effective and efficient sample selection strategies

    Get PDF
    Mycotoxins in agricultural commodities are a hazard to human and animal health. Their heterogeneous spatial distribution in bulk storage or transport makes it particularly difficult to design effective and efficient sampling plans. There has been considerable emphasis on identifying the different sources of uncertainty associated with mycotoxin concentration estimations, but much less on identifying the effect of the spatial location of the sampling points. This study used a two-dimensional statistical modelling approach to produce detailed information on appropriate sampling strategies for surveillance of mycotoxins in raw food commodities. The emphasis was on deoxynivalenol (DON) and ochratoxin A (OTA) in large lots of grain in storage or bulk transport. The aim was to simulate a range of plausible distributions of mycotoxins in grain from a set of parameters characterising the distributions. For this purpose, a model was developed to generate data sets which were repeatedly sampled to investigate the effect that sampling strategy and the number of incremental samples has on determining the statistical properties of mycotoxin concentration. Results showed that, for most sample sizes, a regular grid proved to be more consistent and accurate in the estimation of the mean concentration of DON, which suggests that regular sampling strategies should be preferred to random sampling, where possible. For both strategies, the accuracy of the estimation of the mean concentration increased significantly up to sample sizes of 40-60 (depending on the simulation). The effect of sample size was small when it exceeded 60 points, which suggests that the maximum sample size required is of this order. Similar conclusions about the sample size apply to OTA, although the difference between regular and random sampling was small and probably negligible for most sample sizes
    corecore